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The high-frequency asymptotics of the scattering patter of a plane sound wave
is derived by analyzing the diffraction field near a convex shell. Formula for
scattering pattem is obtained in the form of an integral over the shell surface
which depends on pressure and its normal derivative. Asymptotics of the integ-
ra} for large angles between the direction of the incident field and the line of
observation is determined using the method of stationary phase. Asymptotics
is investigated in the case of small angles,

1, The integral formula for the pattern of scatt-

ering. Leta plane high-frequency sound wave P, = exp {—i [@f — k& (r,
0,)]} impinge in the direction 8, on a thin conves shell placed in a fluid, Press-

ure outside the shell conforms to the Helmholtz equation, The dependence of pressure
fields on time defined by the coefficient exp {—I{®i) is not subsequently indicated
and this coefficient is omitted. Oscillations of the shell are defined by the theory of
thin shells [1] supplemented by the condition of equality of normal components of the
shell velocity and of the fluid on the shell.

Since the field (P_) scattered by the shell satisfies the Helmholtz equation and
the conditions of radiation at infinity, hence in conformity with Green's formula

3 ikp sz P
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where S is the surface of the shell, % isthe wave number, 0 and @ are unit
vectors in the direction of the incident field and of observation, respectively, r and
© represent the distances of the observation point from the coordinate origin and a
point on the shell surface, and 7 is an outward normal to the shell. We assume tae
coordinate origin to be inside the shell. In the case of considerable distances to the

observation point
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where D is the maximum distance of points of the shell from the coordinate origin
and A is the wave length. Since owing to the high-frequency of the impinging field

i is large, hence, if the correction in (1. 2) is to be small, it is necessary that cond-
ition kr >> n? issatisfied. For large r from (1. 1) and (1.2) we obtain
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P_(re) = e*r 1 f(0) [1 + O (u2/ (kr))]

For function f (0) which is called the "pattem of scattering" the following formula
is valid:

1O = — 7z § {5 + %0, P Y exp(— ik (0. ) ds
S

Let us determine P_ close to the shell, Derivation of the diffraction field near
the shell when kh<<€1 (h is the shell thickness) is given in [2] (see, also, [3]).
Formulas for any arbitrary kh can be obtained in the same manner. Formulas for
P_ are different in the illuminated, shadow, and penumbra regions. The penumbra
region is understood to be the region of width ~ p™*¢  surrounding the contour L ,
which is the boundary that separates the region of the geometric shadow from the illum-
inated region of the shell,

In the illuminated region outside the penumbra

P.~ —1(1 —A)/ (1 + A)lexp {ikt}

¢ (0, E (kh)? B
4= ‘_(p:az_n) [plkh“2 —Za—am ) _A—]

¢ Ox \2 1 oz \2)2
p=rhlm (5) + mm (o) |
A =k {(Va2) — pra? (1 — 0%/ E} {(Va2)* — 20,0% (1 + 0) / E}

where T_ is the eikonal of the reflected field z;, ki, and R; are coordinates of
curvature lines on the shell surface, the Lamé coefficients, and the curvature radii
respectively, p; and p, are the densities of the shell and fluid outside it, E and
O are the Young modulus and the Poisson coefficient, a is the speed of sound in the
fluid, « = (04, ¥), and V, is the Hamiltonian operator in coordinates (z;, Z,).
Let us define the system of coordinates (y, z) on the surface of the shell. Tne

z -coordinate defines the position of a point on contour L , and ¥ is represents the
length of the geodesic, accurate to the sign, emerging from contour L in the direct-
ion O, , and has the plus sign in the shade and the minus sign in the illuminated zone
of the shell

s = (k/ 2R¥)sy, v = (2k*/ R)"n

where R is the geodesic curvature radius, Then in the penumbra region
P_~ L exp (the (g, 9} 446 ©)ws G — v)d
-~ Va ;
l=04LJlLUls=1_(0,2n/3)J1_(0, 4 /3) {J 1, (0, 0)
T2 =202 +y
G(5) = —lv (§) + C' (DI/ lwy () + Cw,’ (D))

C= ()" {Ehh— it — o)
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B, = E (kh)(R™* — R, — R,
Ay = s (ka1 — p,a (1 — ?) / EIt — 2p,0* (1 4 0) / EI

where U and w; are Airy functions, [, (b, @) is the ray in the complex plane which
emerges from point b at angle @ to the real axis, and I_(b, ¢) is the same cont-
our but traversed in the opposite direction,
In the shade P_ = —P_ with an accuracy within terms exponentially small witn
respect to . .
Let {'X,i}?=1 be the subdivision of unity on the shell surface, where the camier
¥1 les in the illuminated region, carrier y, in the penumbra region, and carrier
%3 in the shade region, The pattern of scatter can now be presented in the form of
three integrals

3
@)= 3 fn(®)
For f,, (@) (m =1, 2, 3) we obtain the following formulas:

Fr®) = 12 (20— 00, m) T exp(— ik (@— 0, s P
S

o @) = =5 1k { yaexp ik (c — 0, )} { 36 ©)

S 1

(@ mywi @)+ 1 () " wr' ©] deds

f2(0) = o S %2 (8 + 86, n) exp {— ik (8 — 8y, 1)} ds
S

2, Asymptotics of the pattern of scatter for [0 —
0y | > w'/++e. Let us determine the disposition of critical points of integrals in(1. 3).
Forintegrals f, (8) and f; (8) they are determined by conditions

0 — 0y, r/dz)=0, i=1, 2
which implies that at critical points
n (z,, x2)=:i:(0—90)/|0—'90| (2.1

where the plus sign corresponds to the critical point in the illuminated region and the
minus sign to that lying in the shade, These are simple points, since the determinant
of the matrix of second derivatives of the phase with respect to coordinates =z, and
X, is nonzero,
Critical points of f; (8) are determined by conditions

&t/ 8y = (0, dr/ dy), v/ dz = (0, dr/ 0z2)
from which we obtain that at these points
or/ oy =90 (2.2

Critical points of this type are no longer simple, since the matrix of the phase
second derivatives is of rank unity.
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We shall now determine the asymptotics of integrals for |0 — 0, | > p-'/s+e
which we assume to be satisfied for some small & > (, It follows from (2.1) and
(2.2) that it is possible to select the subdivision of unity so that the critical points of
the integral f, (6) lie outside the carrier, and that at critical points of integrals fi

(0) and f5(0) y; and yx, are equal unity, Note that since (@ -+ 0y, 0 — 8,)
= 0 , the integrand of the last integral in (1. 3) at a stationary point is zero, Hence
f3 (8) = O (u=*/s) , and by virtue of the selected subdivision of unity f, (8) is
exponentially small, Applying to the first integral in (1. 3) the method of stationary
phase [4] we obtain

F(0) =% exp{—ik(®—0p, O} (L +0Iln|0—0 ) (23

o _ i exp (in/2) by hy° 1—4%0 o
* =730 det (6 — 8y, &°r°/ 0z, 0x;)|)'s 1+A°(0 8o, n°)

where U° is equal to the value of U (U = hy, hy, r, A, n) atpoint (z,°, Z,°)
for which n (z,°, 2,°) = (0 — 6,) /|0 — 0, | It follows from (2. 3) that
1 g 1= A , 2.4
f(6)~ — T(Ko) hwexp {— lk (e — 90, r°)} ( )
where K is the Gaussian curvature, Formula (2. 4) is in agreement with the results
in [5].

8, Asymptotics of the pattern of scatter for p?
< [0 — 0, | << w'#**. By a suitable selection of the subdivision of unity we att-
ain that the critical points of the first and third integrals in (1, 3) lie outside the carr-
iers y; and Y3, from which follows the exponential smallness of these integrals.
The method of stationary phase cannot be applied to integral f, (8) , since the crit-
ical points that lie inside the carrier %, are not simple.

There are two critical points of the second integral in (1, 3) which satisfy condition
(2.2), one of which (¥, z;) isin the illuminated region (y, << 0), and the second
(y2, 2,) in the shade region (y, > 0). We represent 7y, in the form  y,, +

Y2z » where %a: € C=, 0 < %g; << 1 and the carrier YXy; includes the band of
geodesics that contain the single critical point (y;, z;). Function f, () is, res-
pectively, of the form f,; (0) -+ fay (6). For the integral fo; (6) we express T —
(0, r) in the form

T ) — (0,74 2) = Dua) + (0, T ) (g — ) —

i (6, "r (¥; 2)) v—y)"
" n!

n=1
D; (z) =t (y1, 2) — (0, r (ys, 2))

Since |y [, | y; | = O (u-'/s+¢) , hence for any & >0
k|t(y, 2) — 0, 1y 2) — D (@) =0

Thus the rapidly oscillating terms in fy; (8) depend only on 2z and have each a
single stationary point inside the carrier, Consequently, the method of stationary phase
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can be applied to the integral with respect to z . According to that method from
(1.3} we obtain

2 (3.1
f2(8)~ 3 Qun(6) exp ik ( — (8, 1)) N

—1ig t/y .
Q, - ET%(g,,) " exp (- in [ 4) . < ar,, 6rm)

2| ot 2/ oy |2 9= e
né ;
Np = S 5 Yam €XP {is{; + (s — sm)'f‘} O (8 — S, L) dl ds
1 —t

om (2, 8 = lwn' (D) — izwy (DI Gm (D)

where g is the determinant of the metric tensor of the surface defined in coordinates
(y, z) , and the subscript m indicates that the respective quantity is calculated at
Pomt (yrm Zm)-

Since the integral in (3. 1) contains the exponent of the third power polynomial
in s, its asymptotics must contain integrals with respect to { of Airy functions and
their derivatives,

For § &1, | I, we have the identity

Om (z, ) = 0™ (2, 0 + on® (x, )
om®) = —v' (§) + ixv ()
om® = (1 + icmx) / {wl (C) -+ mel, (C)]

Then the integral NV, is of the form N, = I,,) + I,®, where
e
(n) ; : i 3] (™
9= S 5 Ham GXP{WC + g (5~ ) } Om’ (8~ Sm, L) dL ds
U e

The integral I, after integration with respect to { followed by integration
by parts with respect to &, assumes the form

e ;
- ax ;
T 2m ; e e §3
[g)mm.]i_m- S Texp{—zssm(swsm) 3 Sm}ds
—pt

This integral can be made small, ~ p~"/+ by suitable selection of the subdivis-
ion of unity,

Let us investigate the integral J,,(®. With sp > 0 we extend the interval
(—pe, u®) up to the contour I_ (—pe, 5/ 6) |J [—pe, pel U I, (pe, 7/ 6)
and, then, distort the latter into I_ (s,,, 5t/ 6) | I, (s, v/ 6). Similarly, with

Sm << 0 we transform the interval (—W®, U®) into the contour !_ (sp. 37/ 2)
U L, (sm, n/ 6).

We replace integration of integral [I,(® over the interval (—p®, p®) by integ-
ration over the corresponding contours, The ensuing change of such integral is expon-
entially small with respect to p. The integral with respect to s is then expressed
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in terms of the Airy function and its derivatives. From this we obtain the asymptotics
for N,

N~ 2V TMn =2V {5 (RO @ +

15

{ent R ©dt — 5}

Iy

RO _ wy -+ C, wy’ w_ + G0
1 wy '+‘ lel)ll ! 2 wy + mel’
Since 3
Tm ~ (907 rm) + ks / 3 (3.2

Y,0t,2 ) Oy ~ —KmSmlm (2R / K)'s

where K, is the Gaussian curvature at point (y,,, 2,,), we finally obtain for the
pattemn of scatter for p~* < |0 — 8, | < p~*/+*¢ an expression of the form

2 N .
F®~ Y | Enatsn | rexp {— ik 0 — By, xu) + - 5n® = . @9

m=1

4, The pattern of scatter for |8—0|spul It follows
from Sects, 2 and 3 that the large parameter in the integrals is the quantity |8 — 6, |
p. Hence in that range of 8 the integrands cannot be assumed as rapidly oscillat-
ing, and consequently f; (8) = O (p~"**%), (8 — 8, n) = O (u~%),and f1 (8) = O (1).
Substituting in the third of formulas (1.3) 6, for 6 we obtain

$9) ~ £2.(0) ~ 5 | % (8, m) exp (— th 0 — B, 1)} ds @D
S

Further simplifications are only possible when |8— 8,]p<€ 1. Substituting in the
integral (4. 1) unity for the exponent, we obtain an integral over the shaded part of the
surface which is equal to the area of the shell S projection in the direction 8,, i.e,

f(8) ~ kS [ (2m) (4.2

Note that formulas (2,4), (3.3), (4.1) and (4. 2) for the pattem of scatter agree with
each other, Formula (2,4) which is valid for large angles between the direction of the
incident field and that of the observer, also follows directly from the radiation method,
At small angles radiation formulas are no longer valid and the solution becomes more
complex, Note that at small angles 0 and @, the Fresnel integrals which appear in
[formulas for] the penumbra at finite distances from the surface do not occur,

Re m ark. The same result can be obtained for the Dirichlet and Neumann prob-
lems on the exterior of the convex region in RS, The respective formulas for the
Neumann and Dirichlet problems are obtained from (2. 4) and (3, 3) by the formal sub-
stitution of 4 ==oc and C = oo, and 4 =0 and C =0 , respectively. Proof
of the obtained formulas is similar to that given in [6].

Note that similar results were obtained in [7] for the problem of scatter of a plane
high~frequency electromagnetic wave over a perfectly conducting circular cylinder by
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analyzing the exact solution,
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