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The high-frequency asymptotics of the scattering pattern of a plane sound wave 
is derived by analyzing the diffraction field near a convex shell, Formula for 
scattering pattern is obtained in the form of an integral over the shell surface 

which depends on pressure and its normal derivative. Asymptotics of the integ- 
ral for large angles between the direction of the incident field and the line of 
observation is determined using the method of stationary phase. Asymptotics 
is investigated in the case of small angles. 

1. The integral formula for the pattern of scatt- 
e r i n g. Let a plane high-frequency sound wave P, = exp (--i Ir& - k (P, 

6,)‘l) impinge in the direction 8, on a thin conves shell placed in a fluid. Press- 

ure outside the shell conforms to the Helmholtz equation, The dependence of pressure 
fields on time defined by the coefficient exp (--iat) is not subsequently indicated 
and this coefficient is omitted. Oscillations of the shell are defined by the theory of 
thin shells [l] supplemented by the condition of equality of normal components of the 
shell velocity and of the fluid on the shell. 

Since the field (P_) scattered by the shell satisfies the Helmholtz equation and 
the conditions of radiation at infinity, hence in conformity with Green’s formula 

where 8 is the surface of the shell, k is the wave number, % and 8 are unit 

vectors in the direction of the incident field and of observation, respectively, r and 
p represent the distances of the observation point from the coordinate origin and a 

point on the shell surface, and n is an outward normal to the shell. We assume tile 

coordinate origin to be inside the shell. In the case of considerable distances to the 

observation point 

e*p tik ir $kP _ - t** 41) (1 + Q (~)) 
P 3. 

(1.2) 

p=DDlh 

where L) is the maximum distance of points of the shell from the coordinate origin 
and h is the wave length. Since owing to the high- frequency of the impinging field 

~.r is large, hence, if the correction in (1.2) is to be small, it is necessary that cond- 
ition kr >> p2 is satisfied. For large T from ( 1.1) and (1.2) we obtain 
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P_ (rf3) = eikrrl f (6) [1 _I- 0 (p2 / (kr))l 

For function f (0) which is called the “pattern of scattering” the following formula 
is valid: 

f(O)= -&S{S + ik(O,n) P_} exp{- ik(tl r)}ds 

S 

Let us determine P_ close to the shell. Derivation of the diffraction field near 
the shell when kh < 1 (h is the shell thickness) is given in [Z] (see, also, [3] ). 
Formulas for any arbitrary kh can be obtained in the same manner, Formulas for 

p_ are different in the illuminated, shadow, and penumbra regions. The penumbra 

region is understood to be the region of width - pL-‘lste surrounding the contour L , 
which is the boundary that separates the region of the geometric shadow from the illum- 

inated region of the shell, 
In the illuminated region outside the penumbra 

p_ - - r(l - A) / (1 + A)1 exp {ikc} 

b = Eh {& (2)” + 1 (z)“) h& az, 
A = k {(V,Z)~ - p,a2 (1 - us)/ E} {(V,S)~ - 2p,a2 (1 + a)/ E} 

where ‘r_ is the eikonal of the reflected field Xi, hi, and Ri are coordinates of 
curvature lines on the shell surface, the Lam6 coefficients, and the curvature radii 

respectively, p1 and ps are the densities of the shell and fluid outside it, E and 
d are the Young modulus and the Poisson coefficient, a is the speed of sound in the 

fluid, x = (&,, r), and v2 is the Hamiltonian operator in coordinates (xi, x2). 

Let us define the system of coordinates (y, z) on the surface of the shell. Tne 

z -coordinate defines the position of a point on contour L , and y is represents the 

length of the geodesic, accurate to the sign, emerging from contour L in the direct- 

ion 0O , and has the plus sign in the shade and the minus sign in the illuminated zone 

of the shell 
s = (k / (2R2))"y, Y = (2k2 / R)J’vz 

where R is the geodesic curvature radius. Then in the penumbra region 

P_ - -& exp {ikz (y, z)} S er*tG (f) wl(< - Y) dc 

~=1,U~nU~s=L(O,~:,~)U~_(0,~~,~)“1,(0,0) 

r (y, 4 = 3 (0, 4 + y 

G (5) = --[zJ (5) + cv’ (c)l / [WI (5) + cwl’ (C)I 

c = (&)“’ {f$ kh - i8p2f2yr a2) _ .$L} 
1 
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pr = E (kh)(R-1 - I?,-1 - I?,-‘)2 

A, = p2 (ka)2t1 - plaa (1 - 02) / Eltl - 2p,a2 (1 + a) 1 El 

where V and WI are Airy functions, 1, (b, 9) is the ray in the complex planewhich 
emerges from point b at angle cp to the real axis, and I_ (b, cp) is the same cont- 

our but traversed in the opposite direction. 
In the shade P_ = -P+ with an accuracy within terms exponentially small witit 

respect to p . 
Let {xi}!=, be the subdivision of unity on the shell surface, where the carrier 

x1 lies in the illuminated region, carrier x2 in the penumbra region, and carrier 

x3 in the shade region. The pattern of scatter can now be presented in the form of 

three integrals 

f (0) = & fm (0) 

For f, (0) (m = 1, 2, 3) we obtain the following formulas: 

fl(e)=~Sxl(e-e,,n)~esp{--ile(e-e8,,r)}ds (1.3) 
S 

f2 w = 2 ik 1 x2 exp (ik (r - (e, r))} 1 eis6G (5) x * 

[(e, n) w1 (5) +: (-&)“’ wI1 (Q] 4 ds ’ 

f3 (0) = 2 1 x3 (0 + %, 4 exp {- ik (0 - %, f)) ds 

S 

2, Asymptotics of the pattern of scatter for 16 
e. 1 > ++T Let us determine the disposition of critical points of integrals in( 1,3). 

For ‘integrals fI (9) and fs (0) they are determined by conditions 

(e - eo, dr / axi) = 0, i = 1, 2 

which implies that at critical points 

n (x1, x2) = f (e - e,) / I 8 - e. I (2. 1) 

where the plus sign corresponds to the critical point in the illuminated region and the 

minus sign to that lying in the shade. These are simple points, since the determinant 

of the matrix of second derivatives of the phase with respect to coordinates x1 and 

x2 is nonzero. 
Critical points of f2 (0) are determined by conditions 

az / dy = (e, ar / au), at / a2 = (e, ar 1 ~32) 
from which we obtain that at these points 

ar / ay = 8 (2. 2) 

Critical points of this type are no longer simple, since the matrix of the phase 

second derivatives is of rank unity. 
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We shall now determine the asymptotics of integrals for 18 - 80 J > p-‘/“+e 
which we assume to be satisfied for some small e > 0. It follows from (2.1) and 
(2.2) that it is possible to select the subdivision of unity so that the critical points of 
the integral fs (0) lie outside the carrier, and that at critical points of integrals fi 

(0) and fs (0) x1 and x3 are equal unity. Note that since (0 + 8,,, 8 - 0,) 
= 0 , the integrand of the last integral in (1.3) at a stationary point is zero. Hence 

fs (e) = 0 (@‘a) * and by virtue of the selected subdivision of unity fa (0) is 
exponentially smail. Applying to the first integral in (1.3) the method of stationary 

phase [4] we obtain 

f (e) = ~0 exp {--ik (e - eo, r”)} (1 + 0 Up 1 8 - e. [)-‘I) (2.3) 

where u” is equal to the value of U (U = hi, h,, I, A, n) at point (x,0, x27 
for which n (5i”, ~~‘20) = (f3 - 0,) / 18 - 8, I. It follows from (2.3) that 

f w- - I+ $$ exp {- ik (0 - Oo, P)} (2.4) 

where K is the Gaussian curvature. Formula (2.4) is in agreement with the results 

in PI. 

3. Asymptotics of the pattern of scatter for c1-l 

((10 - e. 1~ pr+e. By a suitable selection of the subdivision of unity we att- 

ain that the critical points of the first and third integrals in (1.3) lie outside the carr- 

iers x1 and x3 , from which follows the exponential smallness of these integrals. 
The method of stationary phase cannot be applied to integral fi (0) , since the crit- 

ical points that lie inside the carrier x2 are not simple. 

There are two critical points of the-second integral in (1.3) which satisfy condition 

(2.21, one of which (Yi, zr) is in the illuminated region (Yi < 0), and the second 
(Ya, 22) in the shade region (Ya > 0). We represent x2 in the form x21 + 

~22 , where Xai E Cm, 0 < Xei < 1 and the carrier Xsi includes the band of 
geodesics that contain the single critical point (Yi, Zi). Function f2 (0) is, res- 

pectively, of the form fil (0) + fiz (0). For the integral fai (0) we express 7 - 
(e, r) in the form 

r (Y, 4 - 03, F (Y, 4) = a+ (2) + (8, ar ‘$ ‘i)) (Y - ~4 - 

m 

C( 8, a”r (Yi, 2) 

n=1 w ) (Y - YJ" 
n! 

@‘i tz) = z (Yi, z, - (0, r hi9 2)) 

Since 1 y I, 1 yi I = 0 (p-%+e) , hence for any e > 0 

k I z (Y, 2) - (0, r (Y, 2)) - @‘t (2) 1 = 0 (cl”) 

‘JANIS the rapidly oscillating terms in fsi (0) depend only on z and have each a 
single stationary point inside the carrier. Consequently, the method of stationary phase 
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can be applied to the integral with respect to z . 
(1.3) we obtain 

According to that method from 

fs (0) - miI Q, (0) e=p Gk (G - Vk r&I N, 
13, 1) 

am = 
k-*!s ( gm)‘fP exp (f in / 4) 

) tm” z 
( 

ar, drm 

2% 1 at,3 / ay iI’* 
- , - 

dz az > 

where g is the determinant of the metric tensor of the surface defined in coordinates 

k/V 2) 3 and the subscript m indicates that the respective quantity is calculated at 

point (pm, 2,). 
Since the integral in (3.1) contains the exponent of the third power ~lynomia~ 

in s I its asymptotics must: contain integrals with respect to 5 of Airy functions and 
their derivatives. 

For 5 E 2, U 1s we have the identity 

0, (X. 5) = Om(‘) (57 5) + 6mfzt t57 5) 

a,(‘) c: -4’ (5) + ix0 (5) 

C3m(2f = (1 + iCmcC) i flu, (5) + CmWl’ it)1 

Then the integral N, is of the form IV,,, = 1,(l) f 1,(s), where 

C 
12’ z 

55 
Xbm exP is5 i- 

I _-FE 

The integral I,(l) after integration with respect to 5 followed by integration 
by parts with respect to s , assumes the form 

1%) = - - -6 CLe dXzm 

sm s T exp 
{ 

- iSSm (S - Sm) - + sm3 
1 

dS 

--Cl= 

This integral can be made small, - IL-‘/* by suitable selection of the subdivis- 
ion of unity. 

Let us investigate the integral I,@). With S, > 0 we extend the interval 

t-p”, p”) up to the contour ‘E_ (-~8, 5~ f 6) U t--p&, pef u 1, fPEl n f 6) 
and, then, distort the latter into Z_ (sm, 5n / 6) U 1, (smr n / 6). Similarly, with 

S, < 0 we transform the interval (-p”, p.“) into the contour i_ (s,, 35t / 2) 
U I, bmt JE I 6). 

We replace integration of integral Imfe) over the interval (--pa, pe) by integ- 
ration over the corresponding contours, The ensuing change of such integral is expon- 
entially small with respect to p. The integral with respect to s is then expressed 
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in terms of the Airy function and its derivatives. From this we obtain the asymptotics 

for N, 

Nln- 2 -t/TM, = 2 J&C efs~f;R~l) (g) dc + 

Since 
z, - (0,, r,J + k-%n3 / 3 

v,at,B / dy N --K,.s,g, (2R, / k)‘l* 
(3.2) 

where K, is the Gaussian curvature at point (y,, z,) ) we finally obtain for the 
pattern of scatter for p-l < 1 0 - Be 1 < p-*i* an expression of the form 

f (0) - 2 1 &ns, I+exp { - ik (0 - 80, rm) + + &I’ & +} Mm (3# 3) 

In=1 

4. The pattern of SC at t e r f 0 r 18 - Q. 14 p-l. It followS 
from Sects. 2 and 3 that the large parameter in the integrals is the quantity 1 0 - 60 I 

Ir * Hence in that range of 6 the integrands cannot be assumed as rapidly oscillat- 

ing, and consequently fP (e) = 0 (p-‘4s+E), (6 - 90, n) = 0 (p-% and fl (3) = 0 (f). 
Subsisting in the third of formulas (1.3) Q, for 6 we obtain 

f ($1 - fa u3 - -& f 
k (e,, 33) exp f- ik (0 - 0@, r)I ds 

S 

(4.1) 

Further simplifications are only possible when 10 - B. 1114 1. Substituting in the 
integral (4.1) unity for the exponent, we obtain an integral over the shaded part of the 
surface which is equal to the area of the shell S projection in the direction 8,, i. e, 

f (8) C-I ikS I’ (2~) (4.2) 

Note that formulas (2.4), (3.3)‘ (4.1) and (4.2) for the pattern of scatter agree with 
each other. Formula (2.4) which is valid for large angles between the direction of the 
incident field and that of the observer, also follows directly from the radiation method. 
At small angles radiation formulas are no longer valid and the solution becomes more 

complex. Note that at small angles 8 and f3, the Fresnel integrals which appear in 
[formulas for] the penumbra at finite distances from the surface do not occur. 

R e m a r k. The same result can be obtained for the Dirichlet and Neumann prob- 
lems on the exterior of the convex region in Rs. The respective formulas for the 
Neumann and Dirt&let problems are obtained from (2.4) and (3.3) by the formal sub- 
stitution of A E 00 and C z 00, and A E 0 and C E 0 , respectively. Proof 
of the obtained formulas is similar to that given in Es]. 

Note that similar results were obtained in [7] for the problem of scatter of a plane 
high-frequency electromagnetic wave over a perfectly conducting circular cylinder by 
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analyzing the exact solution. 
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